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Analysis And Measurement Of Intrinsic Noise In Op Amp Circuits 
Part I: Introduction And Review Of Statistics 

by Art Kay, Senior Applications Engineer, Texas Instruments Incorporated 
 
 
Noise can be defined as any unwanted signal in an electronic system. Noise is responsible 
for reducing the quality of audio signals or introducing errors into precision 
measurements. Board and system level electrical design engineers are interested in 
determining the worst case noise they can expect in their design and design methods for 
reducing noise and measurement techniques to accurately verify their design. 
 
Intrinsic and extrinsic noise are the two fundamental types of noise that affect electrical 
circuits. Extrinsic noise is generated by external sources. Digital switching, 60 Hz noise 
and power supply switching are common examples of extrinsic noise. Intrinsic noise is 
generated by the circuit element itself. Broadband noise, thermal noise and flicker noise 
are the most common examples of intrinsic noise. This article series will describe how to 
predict the level of intrinsic noise in a circuit with calculations, and using SPICE 
simulations. Noise measurement techniques will be discussed also. 
 
 
Thermal Noise 
 
Thermal noise is generated by the random motion of electrons in a conductor. Because 
this motion increases with temperature so does the magnitude of thermal noise. Thermal 
noise can be viewed as a random variation in the voltage present across a component (eg 
a resistor). Fig. 1.1 shows what thermal noise looks like in the time domain (standard 
oscilloscope measurement). It also shows that if you look at this random signal 
statistically, it can be represented as a Gaussian distribution. The distribution is drawn 
sideways to help show its relationship with the time domain signal. 
 

 
 

Fig. 1.1: White noise Shown In Time Domain And Statistically 
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The power contained within a thermal noise signal is directly proportional to temperature 
and bandwidth. Note that a simple application of the power formula can be used to 
express the relationship in terms of voltage and resistance (see Equation 1.1). This 
expression is useful because it allows you to estimate the root-mean square (rms) noise in 
the circuit. Furthermore, it illustrates the importance of using low resistance components 
when possible in low noise circuits. 

 
Equation 1.1: Rms Thermal Noise Voltage 

 
The important thing to know about Equation 1.1 is that it allows you to find an rms noise 
voltage. In most cases, engineers want to know, "What is the worst case noise scenario?" 
In other words, they are most interested in the peak-to-peak voltage. When attempting to 
translate an rms thermal noise voltage to peak-to-peak noise, it is important to remember 
the thermal noise has Gaussian distribution. There are some simple rules of thumb that 
are based on statistical relationships that can be used to convert rms to peak-to-peak 
value. Before presenting these, however, we will discuss some of the mathematical 
background. The focus of this article is to review this statistical background; subsequent 
articles will cover the measurement and analysis of practical analog circuits. 
 
 
Probability Density Function 
 
The mathematical equation that forms the normal distribution function is called the 
Probability Density Function (see Equation 1.2). Plotting a histogram of noise voltage 
measured over a time interval will approximate the shape of this function. Fig. 1.2 shows 
a measured noise histogram with the probability distribution function superimposed on it. 

 
Equation 1.2: Probability Density Function For Gaussian Distribution 
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Fig. 1.2: Measured Distribution With Superimposed Probability Density Function 

 
 
Probability Distribution Function 
 
The Probability Distribution Function is the integral of the probability density function. 
This function is very useful because it tells us what the probability is that an event will 
occur in a given interval (see Equation 1.3, and Figure 1.3). For example, assume that 
Figure 1.3 is a noise probability distribution function. The function tells us that there is a 
30% chance that you will measure a noise voltage between -1 V and +1 V (ie the interval 
[-1, 1]) at any instant in time. 

 
Equation 1.3: Probability Distribution Function 
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Fig. 1.3: Probability Density Function And Probability Distribution Function 

 
This Probability Distribution Function is instrumental in helping us translate rms to peak-
to-peak. Note that the tails of the Gaussian distribution are infinite. This implies that any 
noise voltage is possible. While this is theoretically true, in practical terms the probability 
that extremely large instantaneous noise voltages are generated is very small. For 
example, the probability that we measure a noise voltage between -3σ and +3σ is 99.7 %. 
In other words, there is only a 0.3 % chance of measuring a voltage outside of this 
interval. So for this reason, ±3σ (ie 6σ ) is often used to estimate the peak-to-peak value 
for a noise signal. Note that some engineers use 6.6σ to estimate the peak-to-peak value 
of noise. There is no agreed upon standard for this estimation. Figure 1.4 graphically 
shows how 2σ will catch 68 % of the noise. Table 1.1 summarizes the relationship 
between standard deviation and probability of measuring a noise voltage. 

 
Fig. 1.4: Illustrates How Standard Deviation Relates To Peak-To-Peak 
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NUMBER OF STANDARD 
DEVIATIONS 

CHANCE OF 
MEASURING VOLTAGE 

2σ (same as ±σ) 68.3 % 
3σ (same as ±1.5σ) 86.6 % 
4σ (same as ±2σ) 95.4 % 
5σ (same as ±2.5σ) 98.8 % 
6σ (same as ±3σ) 99.7 % 
6.6σ (same as ±3.3σ) 99.9 % 

 
Table 1.1: Number Of Standard Deviations And Percentage Chance Of Measuring 

 
Thus, we have a relationship that allows us to estimate peak-to-peak noise given the 
standard deviation. In general, however, we want to convert rms to peak-to-peak. Often 
people assume that the rms and standard deviation are the same. This is not always the 
case. The two values are equal only when there is no dc component (the dc component is 
the average value µ). In the case of thermal noise, there is no dc component so the 
standard deviation and rms values are equal. Two examples are in the Appendix showing 
cases where the standard deviation is equal to rms and where it is not. 
 
At the start of this article the formula for computing rms thermal noise voltage was 
introduced. Another way of computing the rms noise voltage is to measure a large 
number of discrete points and use statistics to estimate the standard deviation. For 
example, if you have a large number of samples from an ADC you could use Equation 
1.4, 1.5 and 1.6 to compute the mean, standard deviation and rms of the noise signal. 
Example 1.3 in the Appendix illustrates how these formulae could be used in a simple 
Basic program. The Appendix also lists a more comprehensive set of useful statistical 
equations for your reference. 

 
Equations 1.4, 1.5, 1.6: Statistical Equations For A Discrete Population 

 



 - 6 -

One final concept to cover in this review is the addition of noise signals. In order to add 
two noise signals, you must know if the signals are correlated or uncorrelated. Noise 
signals from two independent sources are uncorrelated. For example, the noise from two 
independent resistors or two op amps is uncorrelated. A noise source can become 
correlated through a feedback mechanism. Noise-canceling headphones are a good 
example of the addition of correlated noise sources. They cancel acoustic noise by 
summing inversely-correlated noise. Equation 1.7 shows how to add correlated noise 
signals. Note that in the case of the noise-canceling headphones the correlation factor 
would be C= -1. 
 

 
Equation 1.7: Addition Of Random Correlated Signals 

 

 
Equation 1.8: Addition Of Random Uncorrelated Signals 

 
In most cases we will add uncorrelated noise sources (see Equation 1.8). Adding noise in 
this form is effectively summing two vectors using the Pythagorean Theorem. Figure 1.5 
shows the addition graphically. A useful approximation is that if one of these sources is 
one-third the amplitude of the other, the smaller source can be ignored. 

 
Fig. 1.5: Pythagorean Theorem For Noise 
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Summary And Preview 
 
This part of the noise series introduced the concept of noise and reviewed some of the 
statistical fundamentals necessary to perform noise analysis. These fundamentals will be 
used throughout this series. Part II of this series will introduce the noise model of the op 
amp and describe some methods for calculating total output noise. 
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Appendix 1.1 
 

Example 1: This example shows a mathematical calculation where rms is not equal to 
standard deviation. In general, the standard deviation and rms are not equal when there is 

a dc component (ie non-zero mean value). 
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Appendix 1.2 
 
Example 2: This example shows a mathematical calculation where rms is equal to 
standard deviation. In general, the standard deviation and rms are equal when there is a 
no DC component (i.e., zero mean value). 
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Appendix 1.3 
 

 
Example 3: Basic Program Used To Implement Mean, Standard Deviation And Rms 
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Appendix 1.4 
 
Statistical Equations Using the Probability Distribution Function: 
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Appendix 1.5 
 
Statistical Equations Using For Measured Data 

 


